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We present a mathematical model and its analytical solution describing directional solidification of a ter-
nary (three-component) system cooled from below. We focus on the solidification theory in the presence
of two distinct mushy layers: (1) solidification along a liquidus surface is characterized by a primary
mushy layer, and (2) solidification along a cotectic line is characterized by a secondary (cotectic) mushy
layer. We consider the case when the phase transition temperatures in two mushy layers represent arbi-
trary functions of the compositions. We obtain an exact analytical solution of the nonlinear set of equa-
tions and boundary conditions in the case of a self-similar solidification scenario. Model predictions are in
good agreement with existing experimental data.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of directional solidification of a solid phase from a
cooled boundary comes under the rubric of so-called Stefan prob-
lems describing a wide range of physical processes [1]. Their rich
nonlinear behavior has attracted substantial scientific interest
and their ubiquity in fields ranging from geophysics to metallurgy
stimulates developing new mathematical models and approaches.
Solidification of binary solutions and melts, as an example, is
rather frequently accompanied by the appearance of supercooled
regions, i.e., regions in the liquid phase, the temperature of which
is lower than the equilibrium temperature, which depends on the
impurity concentration [2]. Due to this effect a cellular structure of
the front, dendritic growth or heterogeneous nucleation can be ob-
served [3,4]. As is evident from experimental works (see, among
others, [5]), an intensive formation of dendritic structures occur
for solidification of metallic melts. In this case, a large quantity
of the latent heat of solidification is released in the mushy zone
and, as a consequence, the constitutional supercooling completely
disappears. The theoretical description of such a crystallization
scenario with a quasiequilibrium mushy region was suggested
for the first time in Refs. [6,7]. This nonlinear model with two mov-
ing boundaries was early solved only in particular cases of the stea-
dy-state, self-similar and arbitrary time-dependent scenarios by
means of different simplifications (see, among others, [8–11]). In
the opposite case, the situation changes rather drastically as a re-
sult of originating of a two-phase zone containing solid phase ele-
ll rights reserved.

lexandrov).
ments in the form of either dendrites or newly born crystals
suspended in the ambient liquid. The structure of this mushy re-
gion depends, first of all, on a relation between the kinetics of both
the solid phase formation and the front motion [12,13]. Many nat-
ural and industrial processes frequently met in practice cannot be
explained in terms of single-component or binary systems but can
be understood, at least partially, in terms of ternary systems. The
present paper is devoted to a detailed analysis of a ternary alloy
mushy layer model in which interfacial boundary conditions are
treated explicitly. The major features of the dynamics of ternary
systems can be studied using laboratory system of two salts dis-
solved in water, hence the mathematical model under consider-
ation and its analytical solutions are based on laboratory
experiments [14] and theoretical studies [15] where a ternary solu-
tion was cooled from below and all convection was suppressed be-
cause the buoyancy of the fluid released on crystallization always
increased. The present study is concerned with new analytic re-
sults on the nonlinear dynamics of solidification of a three-compo-
nent alloy with two mushy layers on the basis of experimental data
on crystallization of the ternary alloy H2O–KNO3–NaNO3.
2. The ternary phase diagram and mushy layer model

Fig. 1 illustrates a sketch of the ternary phase diagram under
consideration in the spirit of Ref. [15] where all liquidus surfaces
and cotectic curves are, generally speaking, nonlinear (in other
words, the temperature represents an arbitrary function of the
compositions along these boundaries). We denote the liquid com-
positions of components A, B and C by A, B and C (A + B + C = 1).
Each of the three sides of the phase diagram describes the binary
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Nomenclature

B and C liquid compositions of components B and C
B1 and C1 liquid compositions of components B and C far from

the primary mushy layer
DB and DC solute diffusivities of components B and C
he solid phase–cotectic mushy layer boundary
hc cotectic mushy layer–primary mushy layer boundary
hp primary mushy layer–liquid-phase boundary
kl and ks thermal conductivities in the liquid and solid phases
mB and mC liquidus slopes
mc

B and mc
C cotectic slopes

nC quadratic coefficient of the liquidus surface
nc

C quadratic coefficient of the cotectic curve
t time
z spatial coordinate
AE, BE, CE compositions of the ternary eutectic point E

BAB
E composition of the B component of the binary eutectic

point EAB

Bcb and Ccb compositions at the cotectic mushy layer–primary
mushy layer boundary

Bpb and Cpb compositions at the primary mushy layer–liquid-
phase boundary

T temperature of the system
TE temperature of the ternary eutectic point E
TAB

E temperature of the binary eutectic point EAB

TM temperature of pure A

Tpb temperature at the primary mushy layer–liquid-phase
boundary

T0 temperature of the solid wall at g = 0
T1 temperature in the liquid phase far from the primary

mushy layer

Greek symbols
g self-similar variable
j thermal diffusivity in the liquid
ke, kc , kp dimensionless interface positions
uA, uB solid fractions of components A and B
uþAC and uþBC solid fractions of components A and B at the right

side of boundary between mushy layers
u�AC and u�BC solid fractions of components A and B at the left side

of boundary between mushy layers
uþAE and u�BC solid fractions of components A and B at the right

side of boundary g ¼ ke

u�AE, u�BE and u�CE solid fractions of components A, B and C at the
left side of boundary g ¼ ke

Subscripts
s solid layer
c cotectic layer
p primary layer
l liquid layer

Fig. 1. The ternary phase diagram used in the model, after Anderson [15]. The three
corners correspond to the pure materials A, B and C and the vertical axis
corresponds to temperature.
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phase diagram (TM is the melting temperature of pure A, the binary
eutectic point EAB has temperature TAB

E and composition BAB
E of the B

component). Three liquidus surfaces are formed by the binary liq-
uidus curves along each of the three sides of the ternary phase dia-
gram and cotectic curves extend from the binary eutectic points
into the interior of the diagram (these curves are the boundaries
of the liquidus surfaces). The ternary eutectic point E is located
at the intersection of these curves, where the temperature is TE

and the compositions are AE, BE and CE. Let a liquid-phase ternary
alloy be at the point P on a liquidus surface. After cooling, compo-
nent A begins to solidify out, and the components B and C are re-
jected into the liquid. The latter leads the system to point S on
the cotectic curve. At this time, the system has a single phase tran-
sition region of the A component – primary mushy layer. When the
cotectic curve is reached (point S), solidification continues and two
components A and B undergo transformations in the solid state. At
this time, the system goes from point S to point E along the cotectic
curve. Here we have two-phase transition regions – primary and
cotectic mushy layers. Thus, the curves P–S–E and S–E, respec-
tively, correspond to the primary and primary–cotectic mushy
layer solidification scenarios. Once the eutectic point E is reached,
the remaining liquid solidifies to form a eutectic solid layer com-
posed of solid A, B and C.

Let us consider the case when the phase transition tempera-
tures in the primary and cotectic mushy layers represent arbitrary
functions of the compositions B and C, i.e.,

T ¼ FðB;CÞ; hcðtÞ < z < hpðtÞ; ð1Þ
T ¼ Fc

1ðBÞ ¼ Fc
2ðCÞ; heðtÞ < z < hcðtÞ; ð2Þ

where he, hc and hp stand for the moving boundaries shown in Fig. 2.
Functions F, Fc

1 and Fc
2 can be found if the temperature and compo-

sitions are known at several points of the phase diagram. Take for
example the linear case [15]
T ¼ TM þmBBþmCC; hcðtÞ < z < hpðtÞ; ð3Þ
T ¼ �mc

BðB� BEÞ þ TE ¼ �mc
CC þ TAB

E ; heðtÞ < z < hcðtÞ: ð4Þ

In this case, we need the following three points for the determina-
tion of liquidus and cotectic slopes mB, mC, mc

B and mc
C: the melting

point of pure A (B = C = 0, T = TM), the binary eutectic point for the
A–B system (B ¼ BAB

E , C = 0, T ¼ TAB
E ) and the ternary eutectic point



Fig. 2. Schematic diagram of solidification from a cooled boundary z = 0 (g = 0). The
shaded regions indicate the relative proportion of each of the solid phases of
components A, B and C present at each height. Regions I, II, III and IV correspond,
respectively, to the liquid phase, primary mushy layer, cotectic mushy layer and
solid phase; hp, hc and he represent the boundary positions (kp , kc and ke represent
the interface positions with respect to the similarity variable g).

Fig. 3. Temperature profiles calculated at various times (numbers at the curves).
Open circles show experimental data ([14], experiment 7). Overlain are the
positions of the mush–liquid interface (dark circles), the cotectic front (dark
squares) and the eutectic front (dark triangles).
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(B = BE, C = CE, T = TE). Substitution of these points into expressions
(3) and (4) gives mB ¼ ðTAB

E � TMÞ=BAB
E ; mC ¼ �mc

Cð1þmB=mc
BÞ;

mc
B ¼ ðT

AB
E � TEÞ=ðBE � BAB

E Þ; mc
C ¼ ðT

AB
E � TEÞ=CE. It is obvious that in

general case we need more known points for the determination of
F, Fc

1 and Fc
2.

Let us treat the solidification process as self-similar (see exper-
iments [14]). What this means is positions of all boundaries are di-
rectly proportional to the square root of time. Therefore, we
introduce interface positions and self-similar variable g of the form

heðtÞ ¼ 2ke

ffiffiffiffiffiffi
jt
p

; hcðtÞ ¼ 2kc

ffiffiffiffiffiffi
jt
p

; hpðtÞ ¼ 2kp

ffiffiffiffiffiffi
jt
p

; ð5Þ

g ¼ z
2
ffiffiffiffiffiffi
jt
p : ð6Þ

Here ke, kc and kp are dimensionless interface positions to be
determined.

In the liquid layer (g > kp) the temperature distribution can be
expressed in terms of the complementary error function

TlðgÞ ¼ T1 þ ðTpb � T1Þ
erfcðgÞ
erfcðkpÞ

ð7Þ

while the compositions are practically constants in accordance with
experiments of Ref. [14].

Taking into account that relaxation times of the concentration
fields are several orders of magnitude high than the thermal relax-
ation time, the temperature field in mushy layers can be regarded
as linear function of g (see also [14]). Also, experiments [14] show
that the concentration fields in mushy layers are nearly linear. The
latter leads us to the Scheil form of these equations [16,17]. How to
solve the diffusion equations in the general form is discussed in
Ref. [18]. However, for the sake of simplicity, we use here their
analogs in the Scheil form in accordance with Ref. [15]

@

@t
ðð1�uAÞBÞ ¼ 0 ;

@

@t
ðð1�uAÞCÞ ¼ 0; hcðtÞ < z < hpðtÞ;

@

@t
ðð1�uA �uBÞBþuBÞ ¼ 0;

@

@t
ðð1�uA �uBÞCÞ ¼ 0;

heðtÞ < z < hcðtÞ

Thus, the temperature and compositions can be written in the form

TpðgÞ ¼ T1 þ gT2 ¼ FðB;CÞ; ð8Þ

BðgÞ ¼ Bpb

1�uAðgÞ
; CðgÞ ¼ Cpb

1�uAðgÞ
ð9Þ
in the primary mushy layer kc < g < kp and

TcðgÞ ¼ T3 þ gT4 ¼ Fc
1ðBÞ ¼ Fc

2ðCÞ; ð10Þ

BðgÞ ¼ Bcbð1�u�AC �u�BCÞ þu�BC �uBðgÞ
1�uAðgÞ �uBðgÞ

; ð11Þ

CðgÞ ¼ Ccbð1�u�AC �u�BCÞ
1�uAðgÞ �uBðgÞ

ð12Þ

in the cotectic mushy layer ke < g < kc .
In the solid phase, 0 < g < ke, the temperature is also nearly

linear function of g

TsðgÞ ¼ T0 þ
TE � T0

ke
g: ð13Þ

The boundary conditions on the liquid–primary mushy layer inter-
face g ¼ kp written by means of the self-similar variables (5) and (6)
are given by

Tl ¼ Tp ¼ Tpb ¼ FðBpb; CpbÞ; ð14Þ
dTl

dg
¼ dTp

dg
; uA ¼ 0; ð15Þ

2jkpðBpb � B1Þ ¼ �DB
dB
dg

; 2jkpðCpb � C1Þ ¼ �DC
dC
dg

; ð16Þ

where we consider the commonly occurring case uA ¼ 0 at g ¼ kp

[9]. The last boundary conditions describe nearly constant distribu-
tions of the compositions B and C in the liquid. Here Tpb, Bpb, Cpb, Bcb,
Ccb, T1, T2, T3, T4, u�AC ;u�BC are parameters to be determined.

Combining expressions (8) and (14), we find T1 and Tpb

T1 ¼ FðBpb;CpbÞ � kpT2; Tpb ¼ FðBpb; CpbÞ: ð17Þ

Taking the derivatives of expressions (9) with respect to g

dB
dg
¼ Bpb

ð1�uAÞ
2

duA

dg
;

dC
dg
¼ Cpb

ð1�uAÞ
2

duA

dg
ð18Þ

and substituting the result into the boundary conditions (16), we
obtain Cpb in terms of Bpb

Cpb ¼
DBpbC1

BpbðD� 1Þ þ B1
; D ¼ DB

DC
: ð19Þ

Eqs. (8) and (9) determine the solid fraction uAðgÞ in the primary
mushy layer in terms of its inverse function
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T1 þ gT2 ¼ F
Bpb

1�uA
;

Cpb

1�uA

� �
� GðuAÞ; ð20Þ

whence

duA

dg
¼ T2

dG
duA

� ��1

:

Now, substitution of (18) in (16) at uA ¼ 0 gives T2 in the form

T2 ¼
2jkpðB1 � BpbÞ

DBBpb

dG
duA

� �
uA¼0

: ð21Þ

Furthermore, combining expressions (7), (8), (15), and (21), we
come to the following equation for the determination of two un-
knowns Bpb and kp

ðT1 � Gð0ÞÞDBBpbffiffiffiffi
p
p

j
¼ kpðB1 � BpbÞerfcðkpÞ expðk2

pÞ
dG

duA

� �
uA¼0

: ð22Þ

The second equation connecting these values will be found below.
Substituting g ¼ kc and uA ¼ uþAC into (20) and using (17) one

can get the primary mushy layer–cotectic mushy layer interface
position

kc ¼ kp þ
1
T2

F
Bpb

1�uþAC

;
Cpb

1�uþAC

� �
� Gð0Þ

� �
: ð23Þ

Continuity equations for the temperature and compositions on the
primary mushy layer–cotectic mushy layer interface g ¼ kc have the
form

Tp ¼ Tc;
Bpb

1�uþAC

¼ Bcb;
Cpb

1�uþAC

¼ Ccb; uþBC ¼ 0: ð24Þ

Substitution of (8) and (10) in (24) gives T3, Ccb and uþAC in the form

T3 ¼ T1 þ kcðT2 � T4Þ; Ccb ¼ Bcb
Cpb

Bpb
; uþAC ¼ 1� Bpb

Bcb
: ð25Þ

Also, expressions (8) and (10) at g ¼ kc lead to the following equa-
tion for Bcb = Bcb(Bpb)

F Bcb;
Cpb

Bpb
Bcb

� �
¼ Fc

1ðBcbÞ: ð26Þ

The boundary conditions at g ¼ kc connecting the thermal and dif-
fusion fluxes and the rate of interface motion dhc/dt written by
means of the self-similar variables (5) and (6) have the form (see
[15])
Fig. 4. The solid fractions in mushy layers as functions of the spatial coordinate at
t = 105 s.
2kcjLV ðuþAC�u�AC�u�BCÞ¼½ð1�uþACÞklþuþACks�T2�½ð1�u�AC�u�BCÞ
�klþðu�ACþu�BCÞks�T4; ð27Þ

2kcj
DB
½BcbðuþAC �u�ACÞ þ ð1� BcbÞu�BC �

¼ BcbT2
dG

duA

� ��1

uþ
AC

� 1�u�AC �u�BC

� �
T4

dFc
1

dB

� ��1

BCB

; ð28Þ

2kcj
Dc

CcbðuþAC �u�AC �u�BCÞ

¼ CcbT2
dG

duA

� ��1

uþ
AC

� ð1�u�AC �u�BCÞT4
dFc

2

dC

� ��1

CCB

; ð29Þ

where we use

dB
dg
¼ T4

dFc
1

dB

� ��1

;
dC
dg
¼ T4

dFc
2

dC

� ��1

:

It is an easy matter to express u�AC ; u�BC and T4 from Eqs. (27)–(29)
dependent of two unknowns dhc/dt and kp. However, we will not
dwell on this point to save room. Now, the solid fractions uAðgÞ
and uBðgÞ distributed in the cotectic mushy layer can be easily
found from Eqs. (10)–(12). Furthermore, equating temperature
(10) at g ¼ ke to the known temperature of the ternary eutectic
point E, we come to three equations for the determination of
uþAE; uþBE and ke; for instance, for ke, we have

ke ¼
TE � T3

T4
: ð30Þ

The solid fractions u�AE; u�BE and u�CE at the left side of boundary
g ¼ ke can be found from the mass balance conditions written by
means of the self-similar variables (5) and (6) [15]

u�BE ¼
DB

2kej
ð1�uþAE�uþBEÞT4

dFc
1

dB

� ��1

BE

�BEðuþAEþuþBE�1ÞþuþBE; ð31Þ

u�CE ¼
DC

2kej
ð1�uþAE �uþBEÞT4

dFc
2

dC

� ��1

CE

� CEðuþAE þuþBE � 1Þ; ð32Þ

u�AE ¼ 1�u�BE �u�CE:

In order to obtain the second equation for Bpb and kp, we use the bal-
ance condition for heat fluxes imposed at the solid phase–cotectic
mushy layer interface (see, for example, [15])
Fig. 5. The concentrations in the residual liquid as functions of the dimensional
coordinate at t = 105 s (B1 = 0.025 – dotted lines, B1 = 0.035 – solid lines, B1 = 0.045
– dashed lines and B1 = 0.055 – chain-dotted lines). Vertical lines show the cotectic
front at various values of B1 (numbers at the lines), whereas the boundary positions
of interfaces he � 2.94 cm and hp � 8.7 cm are practically unchanged for calculated
variations of B1.
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2kejLV ðuþAEþuþBE�1Þ¼T4

�
1�uþAE�uþBE

� �
kl

þðuþAEþuþBEÞks�
TE�T0

TE�T3
ks

�
: ð33Þ

Now, two unknowns Bpb and kp can be calculated from Eqs. (22) and
(33), whereas all the rest parameters describing the process under
consideration can be found from expressions (8)–(13), (17)–(21)
and (27)–(32) by substitution of Bpb and kp.

To take into account possible deviations of the phase transition
temperatures from linear dependences (3) and (4), we will use
their quadratic analogs. However, by virtue of the fact that the
main contribution is connected with component C ([14], experi-
ment 7), one can use the following approximations

Tp ¼ TM þmBBþmCC þ nCC2; hcðtÞ < z < hpðtÞ;
Tc ¼ �mc

BðB� BEÞ þ TE ¼ �mc
CC þ nc

CC2 þ TAB
E ; heðtÞ < z < hcðtÞ:

In this case, as before, we have three points for the determination of
liquidus and cotectic slopes mB, mC, mc

B and mc
C . In order to find qua-

dratic coefficients nC and nc
C , we know from experiments [14] that

the interface temperature T* between the liquid phase and primary
mushy layer is practically unchanged (T� � �6:3 �C). Using the lat-
ter, and omitting trivial mathematical manipulations, we ultimately
arrive at

mB ¼
TAB

E � TM

BAB
E

; mC ¼
TE � TM �mBBE � nCC2

E

CE
;

mc
B ¼

TAB
E � TE

BE � BAB
E

; mc
C ¼

TAB
E � TE þ nc

CC2
E

CE
;

nC ¼
1

C1ðC1 � CEÞ
T� � TM �mBB1 � ðTE � TM �mBBEÞ

C1
CE

� �
;

nc
C ¼

B2
1

BcbC1ðBcbC1 � CEB1Þ
TM þmBBcb þmCBcb

C1
B1

�

þ nCB2
cb

C2
1

B2
1
þ BcbC1

CEB1
ðTAB

E � TEÞ � TAB
E

#
:

In the general case, we need more measured points for the determi-
nation of functions (1) and (2).

3. Discussion

Figs. 3–5 illustrate various distributions in accordance with the
theory under consideration for the system H2O–KNO3–NaNO3 pro-
vided by the experimental work [14] (thermophysical properties of
the system are given by Anderson [15] in Table 1, experiment 7).
Fig. 3 shows the temperature profiles in all regions for fixed values
of the solidification time. It is interesting to note that the mush–li-
quid interface has an approximately constant temperature as pre-
dicted previously by experiments [14]. Apparently, this is due to
the fact that the mush–liquid interface has a temperature close
to the equilibrium liquidus temperature. Also, the latter is consis-
tent with the constant concentrations in the liquid phase con-
nected with temperature Tpb by Eq. (1). The temperatures of the
other two interfaces increase with time because of the constitu-
tional supercooling. As may be seen from Fig. 4, the solid fractions
in two mushy layers decrease away from the boundary solid
phase–cotectic mushy layer. Such a behavior corresponds to the
classical solidification theory of binary mixtures (see, among oth-
ers, [12]). Fig. 5 demonstrates a behavior of the compositions in
the cotectic and primary mushy layer. As would be expected, the
liquid composition C decreases with z due to the effect of impurity
displacement by the growing crystal. Contrary to this classical
behavior, the liquid composition B increases (decreases) with z in
the cotectic (primary) layer. The liquid composition B attains its
maximum at the moving phase transition interface between cotec-
tic and primary mushy layers. From the mathematical point of
view, this is due to the fact that coefficients mB, mC and mc

B are neg-
ative (see, for example, expressions (4)). Physically, the reason is
that the liquid composition B undergoes a phase transition in the
cotectic mushy layer resulting in a decreasing of composition B
in the vicinity of the phase transition interface he(t). Also, an
important point is that the cotectic (primary) mushy layer thick-
ness increases (decreases) with increasing composition B (with
increasing impurity of the second component of a ternary alloy).
In other words, this underlines the role of two different phase tran-
sition layers as the compositions vary.
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